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COMMENT 

Exact enumeration study of self-avoiding walks on 
two-dimensional percolation clusters 
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$ Department of Physics, Kyungpook National University, Taegu 702-701, Korea 
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Abstract. Quenched disorder averages for the numher and size of the self-avoiding 
walks on tw-dimensional percolation clusters very near pc are calculated by exact 
enumeration of all walks which start at the seed site from which clusten have been 
generated by Monte Carlo simulation. Our results are in good agrement with o w  
previous work, which generated the walks by Monte Carlo simulation (rather than 
by enumeratim) on the incipient infinite cluster. The present results show that the 
recently reported enumeration data by Lam are incorrect. 

In this comment, we discuss the issue of whether or not the critical behaviour of 
the self-avoiding walks (SAW) change when they are confined to a randomly diluted 
cluster. This problem is often said to have implications for polymer chains trapped in 
a porous medium. 

In particular, we treat here only the case of SAW on the percolation clusters on 
the two-dimensional square lattice at (or a t  least very near) p ,  M 0.59273. This study 
is motivated by recent works on this problem both on analytical and numerical sides. 
Analytically, the most recent verdict (Meir and Harris 1989) appears to be that the 
universality class of SAW at p ,  is different from that for p > p, .  The main methods 
in that work were a real-space renormalization and a n  +expansion for a replicated 
field-theoretic model. Numerically, a recent Monte Carlo work (Lee and Nakanishi 
1988, Lee et a/ 1989) suggested a behaviour associated with the exponent U to be very 
similar a t  p ,  as for p > p,. However, this work was claimed to be spurious by another 
more recent numerical work (Lam 199Oa) which used a n  exact enumeration method, 

While the analytic approaches cited seem to give unambiguous predictions, there 
were in the past equally unambiguous theoretical predictions for this problem (e.g., 
Chakrabarti and Kertesz 1981, Harris 1983) which were later shown to he incorrect 
(Kim 1983, Lyklema and Kremer 1984). For the reason that this is one of the par- 
ticularly controversial issues in statistical physics, we would like to have sound and 
accurate numerical results to corroborate or contradict analytical (but approximate) 
solutions whichever the case may be. Therefore, i t  is all the more troublesome that the 
two most recent numerical results disagree drastically. It is the main purpose of this 
comment to show that the enumeration study of Lam (199Oa) gives incorrect results 
and his own method, if carried out correctly, in fact gives excellent agreement with 
the earlier Monte Carlo work (Lee and Nakanishi 1988, Lee et ol 1989). 
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To recapitulate, the enumeration work of Lam (1989) gave an estimate of the 
critical index U for SAW a t  p, to he 0.81 f 0.03 in marked contrast to the Monte Carlo 
calculation which suggested U very close to the known value of $ for the fully occupied 
lattice. Lam asserted that this result corroborates the theoretical work of Meir and 
Harris (1989) on the universality class of SAW on diluted lattice. Lam also gave an 
estimate of y hut this appears to he the same as for the fully occupied square lattice, 
the same conclusion as in the Monte Carlo work. 

It is unfortunate that the Monte Carlo work was misinterpreted by some t o  assert 
that the SAW at p, is in the same universality class as for p > p,. The work in 
question simply calculated U (and y) and showed that their values are close to  the 
case p > p, for the square lattice while only U is close (but probably not y) for the 
simple cubic lattice. We note that the numerical estimate by Meir and Harris (1989) 
for U (0.76f0.08) in d = 2 is also close to  4.  It is of course intriguing, and may imply 
very unusual physics, if the exponents are very close (possibly identical) even though 
the universality classes are different; however, no claims were made on the universality 
classes in the Monte Carlo work. 

I t  was also remarked by Lam (1990a) that a behaviour that  appeared to reflect 
some sort of sharp crossover was observed in the Monte Carlo work (Lee and Nakanishi 
1988, Lee et a/ 1989), while no such behaviour exists in his data. Our present results 
indicate, however, that many of the sharp features have been due to the approximation 
method used in computing an  integral (trapezoidal rule) and another method (as in 
Lam 1990a) has a smoothing effect (see figure l(6)). 

The exact enumeration of the SAW work in this way: first, many different disorder 
configurations are generated by a Monte Carlo method often referred to  as the Leath 
method (Leath 1976). Then on each such configuration, a l l  SAW are enumerated 
starting always from the seed site from which the configuration was generated. (Note 
that a particular shape of a cluster represents many different disorder configurations 
because a configuration is defined relative to  a particular reference point (in the case of 
the Leath method, the seed site),) Then, their number GN and the mean-square radius 
of gyration (S,'), and the mean-square end-to-end distance ( R N 2 )  are obtained. 
Finally, these quantities are averaged over the disorder configurations. 

In other words, for t.he number of SAW, 

where the overbar indicates averaging over disorder, C denotes a disorder configuration, 
and P(C) is the probability for C t o  occur in the percolation problem. The sum over 
C is over all configurations that support one or more N-step SAW starting from the 
reference point. For the radius of gyration of the SAW, we have 

where 

where yN denotes any N step SAW and S(7,) is the radius of gyration of YN. The 
necessary averages are completely analogous for theend-to-end distance R,. Needless 
to say, our previous Monte Carlo work computed such quenched averages. 
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Figure 1. (a) Comparison of previous Monte Carlo data (A, . . . . . .), exact 
enumeration by us (B, x).  exact enumeration in Lam (1990.4) (C. 0). and full lattice 
result (D, . . . . , .). Standard errors of the mean are smaller than the symbols. ( b )  
Lam's definition of YN used with the data from (a). 

We believe that the Monte Carlo method described in Lee and Nakanishi (1988) 
and Lee el a1 (1989) is correct and the enumeration method described by Lam (1990a) 
should corroborate it if both were carried out correctly. To he sure, there are various 
subtleties in this problem related to the difference in cluster ensembles, which we 
discuss later in this comment. However, we would first like to present our own exact 
enumeration results performed using the average (1)-(3) exactly as described above. 
The previous Monte Carlo data (A) are ~ compared with these results (B) in figure l(a) 
for the mean-square radius of gyration ( S N z )  together with the data (C) given in Lam 
(199Oa) for the corresponding quantity (denoted by G N 2  in that work) and the results 
(S,') for the fully occupied lattice (D). Comparison of the end-to-end distances yields 
a very similar picture and is thus not produced here. The actual numbers from the 
present work are summarized in table 1. 

We enumerated SAW only up to 20 steps for (B) instead of 35 as in Lam (199Oa); 
however, we generated 5000 configurations up to the 35th shell by the Leath method, 
instead of 500 as in Lam (199Oa). We will comment later on why we only used 20 
steps. Except for the number of clusters used in averaging, the cluster ensemble should 
be essentially the same for our enumeration and Lam's (199Oa). This means that the 
two enumeration results (B) and (C) must agree up to N = 20. However, clearly the 
radii of gyration from our calculation (B) ure much closer to the Monte Carlo results 
(A),  and in rather marked disagreement with Lam's data (C). 
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Table 1. Quenched disorder averages from the present exaccenumerslion work for 
the number of SAW CN, mean-square radius of gyration (SN') ,  and mean-square 
end-bend distance (RN'), caldsted using equations (1)-(3). The e m r  estimates 
are the standard error of the mean, i.e., an-, 1 6  where an--l is the sample standard 
deviation and n = 5000 clustem here. 
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"r c l l  I 
'D.OLt* I "."OI 

In figure I(b)? we show the effective exponents v N  for the two sets of data (A)  and 
(B) by using Simpson's rule for integrating the logarithm of the mean-square radii 
of gyration as in Lam (199Oa) (see equation(3) and (4) in Lam (199Oa)), as opposed 
to the method in the Monte Carlo work which used trapezoidal rule for the mean- 
square radii themselves. We see that (A) and (B) are consistent with the full lattice 
U in contrast to  figure 1 of Lam (1990a). Of course, it is of interest to confirm if the 
agreement will continue for larger N; for the reason we discuss below, this will have 
to wait for future work. Likewise, a detailed study of CN will be deferred. 

We have confirmed, by considering subsets of our data, that the discrepancy he- 
tween (B) and (C) is not due to the larger number of samples we used. Then why 
is there a difference? In our analysis, Lam (199Oa) made two serious errors: first, he 
calculated the following average as the mean-square radius of gyration 

and likewise for the end-to-end distance. In other words, instead of performing the 
double average of (2) as required for the quenched disorder averaging, Lam (1990a) 
averaged the numerator and the denominator in (3) separately over disorder. This 
was discovered by inspecting his computer program and was confirmed by the author 
as well (Lam 1990b;. 

On the other hand, if all possible configurations C are averaged over as in (4), 
the resulting average is independent of p .  This was proved by Harris (1983), who, 
however, argued incorrectly that all disorder averages are trivially independent of P 
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on this basis. Of course, this is now known to be incorrect (Lyklema and Kremer 
1984) and Meir and Harris (1989) uses the correct average as in (2). 

Since Lam's method uses only those configurations that grow to a preset number 
of shells from the seed, his average is not exactly the same as this Harris average. 
However, we have confirmed that the difference to be extremely small and the results 
from a correct calculation of this averaging procedure (4) in the present enumeration 
context give essentially the same radius of gyration and the end-to-end distance as the 
fully occupied lattice. We show this using our own calculation, deliberately using the 
incorrect averaging (4) ,  in figure 2. Almost identical results were also obtained by Lam 
(199Ob) when he made the same calculation for 20-step SAW on 5000 configurations 
of 20 or more shells. 
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Figure 2. (a) Comparison of the exact enumeration result (E, 0)  which uses the 
incarrrcf average (equation (4)) and the full lattice result (D, . , . , , .) for the radius 
of gyration. The data E are from the ZCLstep SAW on 5000 configurations of at least 
35 shells. For reference. the Monte Carlo data (A,  . , , , , .) and the enumeration 
result (E, x )  using the c w n c t  averap in (equation (2)) are reproduced from figure 1. 
(a) Lam's definition of YN is shown for E and D. 

However, this error alone would have given v = :, the same as the fully occupied 
lattice. Lam (1990a) presented the result v = 0.81f0.03 from such a calculation. This 
means that another serious error must have been made in his published data, while 
there is no trace of it in the more recent data from 20-step walks referred to above 
(Lam 1990h). We think that the cause of this second error is in the extremely wide 
distribution of C, from configuration to configuration. We have not presented our 
preliminary results from 35-step SAW primarily because we have been unable to collect 
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enough statistics for them. At this length, it is easy to generate configurations with 
CN varying by several orders of magnitudes, and consequently, the computer time 
required to enumerate all SAW varies a great deal from cluster to cluster. At N = 20 
steps, the distribution is sufficiently narrow that the averages from 500 configurations 
is essentially already the same as those from 5000 configurations. 

for N = 20 to be about 3 x lo4, while Lam 
(199Oa) reported the corresponding quantity to be (2215f167) x 10' in his table. This 
is almost one third smaller than our figure, and points to the likelihood that he missed 
configurations with very large numbers of SAW on them, which are rare but important. 
In response to our query on whether Lam encountered aborted computer runs due 
to exceeding CPU time limits, we were told that indeed this occurred a number of 
times during the collection of the published data. Lam restarted the run with a 
different random number seed each time this occurred. We believe that this is a strong 
indication that the cluster ensemble used in his data were biased by systematically 
excluding those clusters that were much fuller and thus time consuming to enumerate 
SAW on. 

In our view, the two errors we have discussed above are such that the data given in 
Lam (199Oa) are of no scientific significance. This is not to say, however, his enumera- 
tion method is useless or that i t  does not present interesting scientific questions. The 
utility of the method is clear in that already with the data we present here the two 
different numerical methods, enumeration and Monte Carlo, are brought to yield good 
agreement with each other. As we discuss helow this has a consequence on the use of 
different cluster ensembles. In addition, the extraordinary width of the distribution 
for CN (already discussed by, e.g., Derrida 1984) is shown to have a disastrous effect 
on simulations. Of course, a systematic study of this distribution is desirable, and 
such a work is under way, as well as the efforts to extend the present method to longer 
SAW and to clusters in other dimensions. 

We finally discuss some of the subtle features in the problem which relate to the 
existence of the multitude of seemingly different cluster ensembles. First, the previous 
Monte Carlo work sought to calculate the incipient infinite cluster averages (IC). The 
ensemble implied in (2) is, however, the one (AC) in which all configurations supporting 
one or more N-step SAW are included in the calculation of the radii of gyration for 
N-step SAW. It was argued (Lee and Nakanishi 1988, Lee et  a/ 1989, Kim 1990) that,  
since asymptotically long SAW exist only on the incipient infinite cluster (at pc), the 
two ensembles are likely to  yield identical critical behaviour. However, since the AC 
ensemble diminishes as N grows, there may be some systematic trend that modifies 
the critical behaviour. (For the exponent y a third ensemble is often discussed, for 
which y trivially stays the same for all p . )  

As we discussed, Lam (1990a) and also this comment use yet another ensemble 
(35-shell), intermediate between I C  and AC, consisting of all configurations grown by 
the Leath method up to 35 shells or greater from a seed (or its generalization (n-shell)). 

Although their differences are potentially important, we believe that I C  and (35- 
shell) are already very similar based on our data shown in figure 1. In addition, I C  
and AC also show little difference according to a recent Monte Carlo work of WOO and 
Lee (1990). Since (n-shell) is intermediate between I C  and AC, we expect the actual 
values of the mean-square radii to be intermediate, and this also seems to be verified. 
The corroboration of the results from I C  and AC appear to imply that among the 
clusters included in AC only those that have scaling properties of the IC contribute 
significantly toward the averages. 

H Nakanishi and S-B Lee 

Perusing table 1, we obtain, e.g., 
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Of course the same can be said about n-shell, but operationally, we can consider 
this in terms of the attrition rate of the clusters: in Leath method, a percolation cluster 
is grown from a seed, and it stops growing if all of its perimeter sites are determined 
to be vacant. This attrition rate of clusters decreases rapidly on the square lattice, 
and by the time the 35th shell is reached, the rate is already very low. In other 
words, most of the clusters that grow to the 35th shell will grow much further. The 
corresponding rate in higher dimensions, however, may decrease more slowly, possibly 
;.....I.,&" A;$&*,."& L.L....: c-- A:* ---- * L,.. 
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